Capacitance Matrix Methods for the Helmholtz Equation on General Three-Dimensional Regions

نویسندگان

  • Dianne P. O'Leary
  • Olof Widlund
چکیده

Capacitance matrix methods provide techniques for extending the use of fast Poisson solvers to arbitrary bounded regions. These techniques are further studied and developed with a focus on the three-dimensional case. A discrete analogue of classical potential theory is used as a guide in the design of rapidly convergent iterative methods. Algorithmic and programming aspects of the methods are also explored in detail. Several conjugate gradient methods are discussed for the solution of the capacitance matrix equation. A fast Poisson solver is developed which is numerically very stable even for indefinite Helmholtz equations. Variants thereof allow substantial savings in primary storage for problems on very fine meshes. Numerical results show that accurate solutions can be obtained at a cost which is proportional to that of the fast Helmholtz solver in use.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerische Mathematik Manuscript-nr. a Finite-element Capacitance Matrix Method for Exterior Helmholtz Problems

We introduce an algorithm for the eecient numerical solution of exterior boundary value problems for the Helmholtz equation. The problem is reformulated as an equivalent one on a bounded domain using an exact non-local boundary condition on a circular artiicial boundary. An FFT-based fast Helmholtz solver is then derived for a nite-element discretization on an annular domain. The exterior probl...

متن کامل

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

An efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs

In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.

متن کامل

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010